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Two experiments examined how pigeons differentiate response patterns along the dimension of
number. In Experiment 1, 5 pigeons received food after pecking the left key at least N times and then
switching to the right key (Mechner’s Fixed Consecutive Number schedule). Parameter N varied across
conditions from 4 to 32. Results showed that run length on the left key followed a normal distribution
whose mean and standard deviation increased linearly with N; the coefficient of variation approached
a constant value (the scalar property). In Experiment 2, 4 pigeons received food with probability p for
pecking the left key exactly four times and then switching. If that did not happen, the pigeons still could
receive food by returning to the left key and pecking it for a total of at least 16 times and then switching.
Parameter p varied across conditions from 1.0 to .25. Results showed that when p51.0 or p5.5, pigeons
learned two response numerosities within the same condition. When p5.25, each pigeon adapted to the
schedule differently. Two of them emitted first runs well described by a mixture of two normal
distributions, one with mean close to 4 and the other with mean close to 16 pecks. A mathematical
model for the differentiation of response numerosity in Fixed Consecutive Number schedules is
proposed.
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_______________________________________________________________________________

A growing literature supports the idea that
number is a fundamental dimension of stim-
ulus control (for reviews, see Emmerton, 2001;
Gallistel, 1990; Rilling, 1993; Roberts, 1998).
Thus rats and pigeons can learn to choose
alternative A or B according to the number of
stimuli presented to them. For example, a rat
can learn to press a left lever following
a sequence of two tones and press a right lever
following a sequence of eight tones (Meck &
Church, 1983; also Alsop & Honig, 1991; Keen
& Machado, 1999; Machado & Keen, 2002).
Animals also can learn to choose alternative A
or B according to the number of responses
emitted during a previous period. In a typical
arrangement, a pigeon pecks repeatedly at
a center key. After 35 or 50 pecks (decided
randomly) that key is turned off, and two side
keys are illuminated. To receive food the
pigeon must choose the key on the left side
if it pecked the center key 35 times and the key
on the right side if it pecked the center key 50
times (e.g., Rilling, 1965, 1967; also Fetterman,
1993). The results from these studies show that

animals can learn to discriminate at least two
numerosities of a single stimulus or response.

In the preceding studies, the experimenter,
not the animal, controlled the sample numer-
osities. In one case the experimenter pre-
sented the stimulus for a predetermined num-
ber of times, and in the other case the
experimenter prevented the animal from
continuing to respond (by turning off the
key light or removing the lever as the case may
be) after a predetermined number of times. In
both cases the (stimulus or response) numer-
osity was an independent variable whose values
were under the experimenter’s control. In
contrast, in other studies the animal, not the
experimenter, controls the numerosity. To
illustrate, in Mechner’s (1958) study, rats
received food for pressing a left lever at least
N times and then switching to a right lever; if
they switched to the right lever before meeting
the criterion of N responses on the left lever,
then the trial was cancelled. The rats learned
to switch to the right lever only after pro-
ducing runs of approximately N responses on
the left lever. In this Fixed Consecutive
Number (FCN) schedule, the number of
responses on the left lever (the run length)
was a dependent variable whose values were
under the animal’s control.

Another difference between the two sets of
studies is that the former involved relative
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numerosity (e.g., two versus eight tones, or 35
versus 50 pecks) whereas the latter involved
absolute numerosity (N or more presses on the
left lever before switching). To distinguish
them, we refer to the first set as numerosity
discrimination and to the second set as numer-
osity differentiation.

Although procedurally different, discrimina-
tion and differentiation along the dimension
of number may depend on common processes
such as a neural counting mechanism (Gallis-
tel, 1990; Meck & Church, 1983; Meck,
Church, & Gibbon, 1985; Roberts, 1995;
Roberts & Mitchell, 1994; but see Roberts,
Roberts, & Kit, 2002). According to one
version of such a mechanism, a pacemaker
feeds pulses into an accumulator during a brief
period of time (e.g., 200 ms) initiated by each
occurrence of the stimulus or response whose
numerosity the animal must discriminate or
differentiate. At the moment of reinforce-
ment, the pulses in the accumulator are
transferred to a memory store. To choose
between left and right alternatives in discrim-
ination procedures, or to decide when to
switch to the right lever in differentiation
procedures, the animal extracts a sample from
the memory store at trial onset and then
compares the value of that sample with the
value in the accumulator; the decision rule is
based on the similarity between the two
numbers (for further details, see, e.g., Meck
& Church, 1983; Meck, Church, & Gibbon,
1985).

The hypothesis of a common neural mech-
anism would be more plausible if it were
shown that performance in discrimination and
differentiation procedures has the same quan-
titative properties. Consider one of them, the
scalar property. Fetterman (1993) trained
pigeons to discriminate two response numer-
osities n1 and n2 in the manner described
above and then introduced probe trials with
intermediate numerosities to obtain a psycho-
metric function. This function plots the
probability of choosing the ‘‘Large’’ alterna-
tive against the probe trial numerosity. Across
experimental conditions, Fetterman varied the
absolute values of n1 and n2 and their ratio.
Results showed that when the ratio was held
constant (e.g., 5 vs. 10, 10 vs. 20, and 20 vs. 40
for a ratio of 2; or 5 vs. 20, 10 vs. 40, and 20 vs.
80 for a ratio of 4), the psychometric functions
were superposed when plotted with a relative-

number scale, that is, when all the numeros-
ities used in a condition were divided by the
smaller numerosity of each pair. Consistent
with the scalar property, the curves for
different ratios were not superposed. The
scalar property is a sort of Weber’s law in the
sense that equal ratios yield equal discrimina-
bilities.

Whether the scalar property holds in nu-
merosity differentiation studies is unclear. In
Mechner’s (1958) FCN schedule, the scalar
property would be observed if the data
obtained with different criteria also were
superposed when plotted with a relative-num-
ber scale. To illustrate, assume that, when the
reinforcement criterion required four re-
sponses on the left lever before a switch to
the right lever yielded food, the rat produced
a Gaussian distribution of responses with mean
m1 and standard deviation s1. Assume similarly
that, when the reinforcement criterion re-
quired eight responses, it produced a normal
distribution with mean m2 and standard de-
viation s2. The scalar property requires that
m2/m1 5 s2/s1 or, equivalently, that the
coefficient of variation or Weber fraction re-
main constant (s1/m1 5 s2/m2 5 c). With one
exception discussed below, no study using FCN
schedules (e.g., Galbicka, Fowler, & Ritch,
1991; Laties, 1972; Mechner, 1958; Platt &
Johnson, 1971) reported the data in ways that
allow direct examination of the scalar property
for a wide range of values of N (i.e., means and
standard deviations were not presented).

The exception was Hobson and Newman’s
(1981) study with pigeons, which found de-
creasing coefficients of variation as N in-
creased from 4 to 50. More specifically, the
authors found that both m and s increased
with N, but m increased at a higher rate.
Although important and clearly in need of
replication, Hobson and Newman’s findings
are difficult to interpret because of a pro-
cedural feature. Instead of a pure FCN
schedule, the authors used a mixture of
a FCN schedule and a fixed-ratio (FR)
schedule: On a random half of the trials,
the pigeons received food after pecking the
left key at least N times and then switching to
the right key (FCN N); on the other half of
the trials, the pigeons received food after the
Nth peck on the left key (FR N). Consider
then the differences in the contingencies of
reinforcement that are implemented when
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the two schedules are combined (in a mixed
FCN–FR schedule) and their potential effects
on the average and the variability of run
length. Concerning the average run length,
the prediction is straightforward: Because left-
key pecks are reinforced directly only in
mixed FCN–FR schedules, run length is
probably greater under this schedule than
under the equivalent FCN schedule. More
generally, we predict that, when all other
things are equal, the tendency to peck the left
key is stronger when left key pecks are
reinforced directly (the mixed schedule) than
when they are reinforced indirectly, that is,
when followed by a peck on the right key (the
FCN schedule).

Concerning the variability of run length, the
prediction is less clear. On the one hand, one
could predict smaller variability in the mixed
schedule because the pigeon has more oppor-
tunities to learn to concentrate its runs around
N, the extra opportunities being the trials
on which reinforcers follow the Nth peck on
the left key. This prediction assumes that rein-
forcers after the Nth peck on the left key are
functionally equivalent to reinforcers after runs
of N pecks on the left key (i.e., after N pecks on
the left key followed by one peck on the right
key). On the other hand, with equal reason-
ableness one could predict greater variability in
the mixed schedule because the variability of
reinforced run lengths tends to be greater in that
schedule. To illustrate with an extreme but easy-
to-understand example, suppose a pigeon pro-
duces only runs of length 8 when the re-
inforcement criterion equals 4. If the schedule
is FCN 4, then all reinforcers follow runs of
eight pecks and the variability of reinforced run
length is 0. But if the schedule is mixed FCN 4
FR 4, then half of the reinforcers follow runs of
eight pecks and half follow runs of four pecks,
and the variability of reinforced run lengths is
positive. A pigeon sensitive to the reinforced
run lengths would probably show greater run-
length variability on the mixed FCN–FR sched-
ule than on the FCN schedule.

Given the preceding arguments, we do not
know whether Hobson and Newman’s (1981)
findings and conclusions concerning the
scalar property extend to pure FCN schedules.
Hence, the first goal of the present study was
to clarify this issue. To that end, we extended
Mechner’s (1958) FCN schedule to pigeons
and varied the numerosity criterion systemat-

ically across experimental conditions. We
expected the results would yield the functions
relating the average and standard deviation of
run length to N and thereby show whether the
coefficient of variation changed or remained
constant.

Some researchers have argued that a (hypo-
thetical) neural counting mechanism shares
many components with a (hypothetical) neu-
ral timing mechanism. Meck and Church
(1983; also Meck, Church, & Gibbon, 1985;
Roberts, 1995) advanced the idea that there is
only one mechanism and that it functions in
either a timing mode or a counting mode. The
difference is that, in the timing mode, the
accumulator receives pulses from the pace-
maker throughout the duration of the to-be-
timed stimulus, whereas in the counting mode
the accumulator receives pulses only for a brief
period of time during each occurrence of the
to-be-counted event. In fact, the similarities
between timing and counting are not restrict-
ed to theory but extend to empirical issues.
Most of the procedures used in numerosity
discrimination and differentiation studies and
the results obtained with them parallel proce-
dures used in, and results obtained with, time
discrimination and differentiation studies. For
example, the bisection procedure is used to
study both stimulus numerosity discrimination
and time discrimination, and the results
obtained with it, at least with animals, also
are similar (i.e., the ogive-like psychometric
functions have the point of subjective equality
close to the geometric mean of the two
training durations or numerosities; and the
psychometric functions obtained with dura-
tions or numerosities with the same ratio
overlap when plotted in relative time or
number; see Gallistel, 1990; Meck & Church,
1983; and Meck, Church, & Gibbon, 1985).

The parallels between time and numerosity
studies suggested the second goal of the
present investigation, namely, to study wheth-
er pigeons can learn to emit not one but two
response numerosities within a single experi-
mental condition. The study is the numerosity
differentiation analogue of the following study
on temporal differentiation: A pigeon receives
food for pecking a key after either 10 s or 120 s
have elapsed since the onset of the trial. No
cue signals whether the current trial will be
short or long and the two types of trials are
equally probable (a mixed fixed-interval 10 s
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fixed-interval 120 s with its components ran-
domly presented). The result of this training is
that, during the long trials, the average rate of
pecking increases from the beginning of the
trial until approximately 10 s have elapsed, at
which point the rate of pecking decreases
before beginning to increase again until the
end of the trial. That is, the response rate
curve shows two peaks, one close to 10 s and
the other close to 120 s. Moreover, the widths
of the curve around the two peaks show the
scalar property, for the width at 120 s is about
12 times the width at 10 s (Leak & Gibbon,
1995; see also Catania & Reynolds, 1968;
Whitaker, Lowe, & Wearden, 2003).

In the present study we developed and tested
a numerosity differentiation analogue of the
preceding mixed schedule. In a modified FCN
schedule, pigeons could receive food in one of
two ways: (a) by pecking the left key exactly four
times and then switching to the right key; or, if
this did not occur (e.g., the pigeon pecked the
left key five times and then switched); (b) by
continuing to peck the left key for a cumulative
total of at least 16 pecks and then switching to
the right key. To put it differently and perhaps
more intuitively, the pigeon had a first chance
to obtain food by switching to the right key after
emitting a run of four pecks on the left key.
Intrinsic variability in its ‘‘estimate’’ of four
(Galbicka et al., 1991; Laties, 1972; Mechner,
1958; Platt & Johnson, 1971) meant that on
some trials the pigeon would switch to the right
key after runs of, say, three or five pecks on the
left key. On those trials, the pigeon had
a second chance to obtain food by switching
to the right key after emitting a second run of
pecks on the left key. Food followed the second
run provided the two runs on the left key added
to at least 16 pecks. Thus, if the first run was
three pecks long, then food was delivered if the
second run was at least 13 pecks long. We
predicted that the pigeons would generate
distributions of run length on the left key with
two peaks, one close to 4 and the other close to
16. Or, to put it differently, the pigeons would
produce two runs, the first of about four pecks
and the second of about 12 pecks such that the
first and second runs combined added to 16
pecks. In addition, if the scalar property held
within a single experimental condition, then
the means and the standard deviations of the
two peaks would be in approximately the same
ratio.

Two experiments are reported below. The
first experiment used the standard FCN
schedule and varied the reinforcement criteri-
on N across conditions. We examined two
issues: how the mean m and standard deviation
s of run length varied with N and whether the
coefficient of variation s/m remained con-
stant. The second experiment used a modified
FCN schedule that shaped a bimodal distribu-
tion of run lengths. The issues under scrutiny
were whether pigeons can learn to emit two
response numerosities on the same key and
within the same condition and how the ratios
s/m for the two run-length distributions
compare. Whereas Experiment 1 examined
the learning of response numerosities succes-
sively (between conditions), Experiment 2
examined the learning of response numeros-
ities simultaneously (within a condition). We
conclude with some thoughts on how pigeons
and rats learn to emit patterns with particular
numbers of responses when exposed to FCN
schedules.

EXPERIMENT 1

The experiment extended Mechner’s
(1958) FCN schedule to pigeons and varied
the reinforcement criterion across conditions
from 4 to 8 to 16 to 32. On the basis of
previous studies using the same procedure
(Galbicka et al., 1991; Laties, 1972; Mechner,
1958; Platt & Johnson, 1971), we predicted
that in each condition the pigeons would
generate Gaussian distributions of run length
and that the mean and standard deviation of
these distributions would increase linearly with
the criterion N.

If the standard deviation and the mean
increase linearly with N, then the coefficient of
variation will either remain constant for all N
or approach a constant as N increases. The
former alternative corresponds to the strict
version of Weber’s law, that is, s5k 3 m and
therefore s/m5k, for some constant k . 0 (the
Weber fraction); the latter alternative corre-
sponds to the generalized version of Weber’s
law, that is, s5k 3 m + b, and therefore s/m
5k + b/m. If we allow b to be greater than or
equal to 0, then the latter alternative will
include the former as a special case. The
deviations from the scalar property will de-
pend on the relative magnitudes of b and m
such that when b is much smaller than m—as it
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certainly is for large N and as it may be for
small N—the term b/m becomes negligible,
the coefficient of variation approaches the
constant k, and the distributions of run length
superpose increasingly more when plotted by
relative number.

The distributions obtained in this experi-
ment and their estimated parameters served as
a baseline against which the data from the
second experiment could be compared.

METHOD

Subjects

Five pigeons (Columba livia) were main-
tained at 80 percent of their free-feeding body
weight with water and grit continuously avail-
able in their home cages. Three pigeons (P99,
P98 and P10) were 2 years old at the begin-
ning of the study and had experience with
variable-interval and variable-ratio reinforce-
ment schedules. The other 2 pigeons (P16 and
P13) were 1 year old and experimentally naı̈ve.

Apparatus

The pigeons were studied in three identical
operant chambers. Each chamber was 34 cm
wide, 30.5 cm long, and 34 cm high. The walls
and ceiling were made of aluminum, and the
floor was wire mesh. The front panel was
equipped with two circular keys that were
2.5 cm in diameter. The keys were centered on
the wall, 23 cm above the floor, and 14 cm
apart, center-to-center. The key on the right
could be illuminated with green light and the
key on the left with red light. On the back wall
of the chamber, 3.5 cm below the ceiling,
a houselight provided general illumination.
Reinforcement consisted of mixed grain de-
livered through a food hopper. The hopper
was accessible through a 6 cm 3 5 cm opening
that was centered on the front panel 8.5 cm
above the floor. The operant chamber was
enclosed in an outer box. On the back wall of
the outer box, a ventilating fan circulated air
through the chamber and helped to mask
extraneous noises. A personal computer pro-
grammed in C++ controlled all experimental
events and recorded the data.

Procedure

Preliminary training. The pigeons learned
to peck the keys through autoshaping. Next
they were exposed to trials in which, after a 10-

s blackout intertrial interval (ITI), the house-
light and the two keylights were illuminated,
the left always with red and the right always
with green light. The reinforcement rule was
initially a mixed FCN FR schedule with a pro-
portion p of FR trials and a proportion 1-p of
FCN trials (Mechner, 1958). Thus, with prob-
ability p a reinforcer was delivered after the Nth

peck on the left key (FR N schedule) and with
probability 1-p a reinforcer was delivered after
one peck on the right key provided that peck
was preceded by at least N pecks on the left key
(FCN schedule). In both cases the pigeon had
to peck the left key a minimum of N times. If
the pigeon pecked the right key before it
completed N pecks on the left key, the trial was
cancelled and the ITI started. Across five or six
sessions of 60 trials each, parameter p de-
creased from .5 to 0 whereas parameter N
increased from 1 to 16.

During the early sessions the reinforcement
duration was adjusted for each pigeon in order
to minimize extrasession feeding. Final values
ranged from 2 to 4 s. During reinforcement,
the houselight and the keylights were turned
off, and the hopper light was illuminated.

Experiment proper. Sessions were divided
into trials, and each trial was scheduled as
follows: After the 10-s ITI, both keys were
illuminated, the left with red and the right
with green light. A peck on either key turned
both keys off for 100 ms. After at least N
consecutive pecks on the left key, the first peck
on the right key was reinforced, and then the
ITI started. A premature peck on the right key
cancelled the trial by turning both keys off and
starting the ITI. The trial also was cancelled if
the pigeon did not peck for 120 s. Each session
lasted until 100 trials were completed or 50
reinforcers were collected, whichever came
first.

The experiment was divided into four
conditions, each characterized by the value of
the reinforcement criterion N. As Table 1
shows, the order of N was counterbalanced
across pigeons according to a Latin square
design with one repetition. Each condition
remained in effect for a minimum of 10
sessions and until the mean and standard
deviation of run length appeared visually
stable for five consecutive sessions.

As Table 1 shows, for some pigeons N had to
increase considerably between successive con-
ditions (e.g., from N54 to N532). To prevent

RESPONSE NUMEROSITY 157



extinction, in these cases (see asterisks in the
Table) the criterion increased gradually across
sessions. For example, for pigeon P98, the
transition from Condition 3 (N54) to Condi-
tion 4 (N532) lasted nine sessions and during
these sessions the criterion increased from 8 to
16 to 20 and to 24 before it was set at 32. Data
analysis was based on the last five sessions of
each condition.

RESULTS AND DISCUSSION

Figure 1 shows the relative frequency dis-
tributions of run length for each pigeon and
reinforcement criterion. These distributions
were well fit by Gaussian functions with two
free parameters each, the mean m and the
standard deviation s. Table 2 shows summary
statistics obtained from the data and from the
curve fits. In addition to m and s, the Table
shows the coefficient of variation, c5s/m, and
the variance accounted for, v2.

The run-length distribution was centered
close to the reinforcement criterion. The
difference between the obtained mean run
length and N did not change consistently with
N (repeated-measures ANOVA, F(3,12)5
0.77), but the relative difference (i.e.,
(m2N)/N) decreased with N (repeated-mea-
sures ANOVA, F(3,12)53.76, p , .05). The
Gaussian functions accounted for 80 to 100
percent of the variance in the data
(mean595%).

The area of a distribution at and above the
criterion corresponds to the proportion of
reinforced trials. This area decreased with N:
The averages for N54, 8, 16, and 32 equaled
86%, 77%, 72%, and 54%, respectively (re-
peated measures ANOVA, F(3, 12)56.7, p ,
.05). This finding means that as N increased the
pigeons became less efficient in earning food.

Figure 2 shows how the two free parameters
of the Gaussian functions as well as the

Table 1

The reinforcement criterion N and the number of sessions (in parentheses) for each condition
and pigeon. The asterisks indicate that the criterion increased gradually for some subjects
between the two conditions and for the number of sessions shown in parentheses.

Pigeon Condition 1 Condition 2 Condition 3 Condition 4

P16 32 (16) 4 (18) 16 (10) 8 (13)
P99 16 (15) *(5) 32 (19) 8 (10) 4 (13)
P10 4 (16) 8 (18) *(8) 32 (30) 16 (14)
P98 8 (16) 16 (25) 4 (23) *(9) 32 (23)
P13 4 (20) 8 (27) *(29) 32 (16) 16 (12)

Fig. 1. The relative frequency distribution of run
length during the last five sessions of each condition. A
condition was defined by the reinforcement criterion N.
The curves are the best-fitting normal distributions (see
parameters in Table 2).

158 ARMANDO MACHADO and PAULO RODRIGUES



coefficient of variation changed with N. The
top panels show that for each pigeon the
mean increased linearly with N. The slope of
the regression lines varied from 0.87 to 1.26.
(In fitting the data from pigeon P98 the
intercept was forced to 0 because a negative
intercept made no sense in the present
situation.) The lines accounted for at least
99 percent of the variance. The middle panels
show that the standard deviation also in-
creased linearly with N. The slopes of the
lines ranged from 0.1 to 0.3 (again, the
intercept of the regression line for pigeon
P98 was forced to zero). Variance accounted
for ranged from 89 to 99 percent.

The bottom panels show the coefficient of
variation calculated from the two estimated
parameters ( m and s) and the hyperbolas or
straight line predicted from the equations for
the mean (top panel) and standard deviation
(middle panel) regression lines. Thus, from
m(N) 5 b1+m1N and s(N) 5 b2+m2N, one
gets for c(N) the hyperbola (b2+m2N)/
(b1+m1N), which converges to the asymptotic

value m2/m1. For pigeon P98, because both b1

and b2 equaled 0 the coefficient of variation
equaled m2/m1 for all N.

Figure 3 summarizes the behavior of the
mean, standard deviation, and coefficient of
variation as a function of N for all subjects. In
each panel, the filled circles show the mean
value of the parameter across pigeons (61
standard deviation), and the lines show the
mean of the individual functions displayed in
Figure 2. The top panel shows the linear
increase of the mean run length with N. The
line has a slope of 0.99 and an intercept of 1.65
and accounts for more than 99 percent of the
variance. The middle panel shows the linear
increase of the standard deviation of run
length with N. The best-fitting line has a slope
of 0.16 and an intercept of 1.05 and accounts
for more than 99 percent of the variance.
Finally, the bottom panel shows the coefficient
of variation decreasing and approaching the
value of 0.16, the ratio of the slopes of the two
regression lines. The fitted curve accounts for
97 percent of the variance.

Table 2

Run-length statistics from curve fitting and from the data during the four conditions of
Experiment 1. Statistics m, s, and c are the mean, standard deviation, and coefficient of variation,
respectively; v2 is the variance accounted for by the fitted curve.

N 5 4 N 5 8 N 5 16 N 5 32

Fit Data Fit Data Fit Data Fit Data

P10 m 4.4 4.9 9.6 9.8 16.6 16.2 30.3 29.6
s 1.6 1.9 2.7 2.8 3.0 3.5 4.5 6.3
c 0.35 0.40 0.28 0.29 0.18 0.22 0.15 0.21
v2 0.96 0.97 0.98 0.94

P13 m 5.7 5.9 7.9 7.9 16.9 17.2 30.6 30.8
s 1.5 1.8 1.7 1.6 3.0 3.3 5.3 5.6
c 0.26 0.31 0.21 0.21 0.18 0.19 0.17 0.18
v2 0.98 0.99 0.97 0.94

P16 m 7.0 7.0 9.7 9.8 21.0 20.7 35.2 34.7
s 2.1 2.3 2.4 2.6 5.3 6.2 6.5 8.3
c 0.30 0.33 0.24 0.26 0.25 0.30 0.19 0.24
v2 0.91 0.96 0.92 0.92

P98 m 4.0 4.2 8.8 9.2 21.1 21.2 38.9 37.1
s 0.8 1.1 2.0 2.3 3.9 4.4 9.2 11.1
c 0.21 0.26 0.23 0.25 0.18 0.21 0.24 0.30
v2 1.00 0.97 0.96 0.80

P99 m 5.3 5.3 10.0 10.2 15.9 15.8 30.2 29.7
s 1.5 1.6 2.6 2.7 3.6 4.0 4.8 6.5
c 0.29 0.31 0.26 0.26 0.22 0.25 0.16 0.22
v2 0.99 0.98 0.96 0.92

Avg m 5.3 5.4 9.2 9.4 18.3 18.2 33.1 32.4
s 1.5 1.7 2.3 2.4 3.7 4.3 6.1 7.6
c 0.28 0.32 0.24 0.25 0.20 0.23 0.18 0.23
v2 0.97 0.98 0.96 0.91
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To determine how the preceding results
compare with previous findings, Figure 4
shows the data from the present study together
with the data from four other studies—
Mechner (1958), Platt and Johnson (1971),
Laties (1972), and Hobson and Newman
(1981). Consider the first two studies. Both
used rats and varied N from 4 to 8 to 12 to 16.
Mechner1 showed the histogram of run length
for each of his 6 animals and for each criterion
value N. Platt and Johnson showed histograms
for only 1 rat but mentioned that the selected
histograms represented well the data from the
other 7 animals. We fitted a normal density
function to each histogram and thus estimated
the mean and the standard deviation of the
distribution of run length for each criterion N.
For Mechner’s study, we then averaged the
estimated parameters across the 6 rats. As the
top two panels of Figure 4 show, the rat data
were similar to the present data—the two
parameters increase linearly with N, and the

best-fitting regression lines relating the esti-
mated parameters to N had similar slopes: For
the mean, the average slopes were 1.15
(Mechner), 1.18 (Platt & Johnson) and 0.99
(present study); for the standard deviation, the
average slopes were 0.17 (Mechner), 0.19
(Platt & Johnson), and 0.16 (present study).

The solid diamonds in Figure 4 show the
averages of the observed (not estimated)
means and standard deviations reported by
Laties (1972) for 4 pigeons at criterion value N
5 8. The observed values were close to the
values obtained in the present experiment.

Consider now Hobson and Newman’s
(1981) data displayed in the bottom two
panels. As mentioned before, their pigeons
were exposed to mixed FCN–FR schedules in
which the required run length N varied from 4
to 50. The authors report that the group
average of the mean run lengths was well fitted
by the power function m(N) 5 1.6 3 N0.92 (v2

5 0.999). For that reason, instead of reading
the data points from a figure, we used the
power function to generate them. The results
(see the third panel) show that, in Hobson and
Newman’s experiment, m increased at a slightly

Fig. 2. The estimated means (top panels) and standard deviations (middle panels) of run length as a function of the
reinforcement criterion N; the bottom panels show the coefficients of variation. The solid lines are the best-fitting
regression lines.

1 Mechner’s (1958) data contain a mistake in Figure 1,
rat N4, as the proportions do not add to 1 but to .5. We
multiplied all values by 2.
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faster rate than in the present experiment:
The best-fitting regression lines had equations
m(N) 5 1.14 3 N+1.72 and m(N) 5 1.0 3
N+1.53, respectively, and accounted for more
than 99 percent of the variance. The direct
reinforcement of left key pecks in Hobson and

Newman’s study may have been the cause of
the slightly longer runs produced by their
subjects.

The bottom panel shows the coefficients of
variation and the best-fitting hyperbolas for
Hobson and Newman’s (1981) data and the
current data. Hobson and Newman’s data were
read from Figure 8-4 in their paper. To fit the
hyperbola to these data, we used the equation
reported above for m(N) (i.e., 1.14 3 N+1.72)
and estimated the slope and intercept param-
eters of the corresponding equation for the
standard deviation, s(N) 5 m 3 N+b. The
best-fitting values were m 5 0.22 and b 5 1.6,
which means that the hyperbola displayed in
the panel has equation c(N) 5 (0.22 3
N+1.6)/(1.14 3 N+1.72). The hyperbola for
the present experiment is c(N) 5 (0.16 3
N+0.96)/(1.0 3 N+1.53). The two curves
accounted for more than 98 percent of the
variance. The difference in the slopes and
intercepts of the standard deviation functions
indicate that run length was more variable in
the mixed FCN–FR schedule than in the pure
FCN schedule. As mentioned above, the cause
of this difference may have been the higher
variability of reinforced runs in the mixed
schedule.

The data in the bottom panel also show that
in both studies the group average of the
coefficient of variation decreases with N
rapidly and then approaches an asymptote.
Although not shown in the panel, the same
plots with Mechner’s (1958) and Platt and
Johnson’s (1971) data sets reveal a similar
trend—a rapid decrease of the mean coeffi-
cient of variation with N such that for values of
N greater than about 10 (Mechner and Platt &
Johnson with rats) or 12 (Hobson & Newman
and the present study with pigeons) the mean
coefficient of variation does not change
appreciably. It follows that the scalar property
is clearly violated for small values of N but
holds increasingly better for values of N
greater than about 12.

In conclusion, the results from Experiment
1 show that, in FCN schedules, the distribu-
tions of run length are roughly Gaussian. The
mean and the standard deviation of these
distributions increase linearly with the re-
inforcement criterion, N. A generalized ver-
sion of Weber’s law holds in the sense that, as
N increases, the coefficient of variation de-
creases hyperbolically and approaches a con-

Fig. 3. The means across pigeons of the estimated
means (top), standard deviations (middle) and coeffi-
cients of variations (bottom) as a function of the re-
inforcement criterion N. The bars show 6 one standard
deviation. The solid lines are the averages of the best-
fitting individual lines shown in Figure 2. In the bottom
panel, the dotted line shows the asymptote approached by
the mean coefficient of variation.
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stant value. These results are consistent with
previous findings obtained with FCN sched-
ules using either rats or pigeons. Whether
these findings hold also when two numeros-
ities are learned within the same experimental
session was addressed in the second experi-
ment.

EXPERIMENT 2

The reinforcement rule of Experiment 2 was
the numerosity equivalent of the mixed fixed-
interval fixed-interval (mixed FI FI) schedule
used by Catania and Reynolds (1968). In that
study, pigeons received food at the end of
a fixed interval that with probability p was 30 s
long and with probability 1–p was 240 s long.
No stimulus signaled which FI schedule would
be in effect on each trial. The authors varied p
across experimental conditions to study how
that parameter affected the response-rate
function. In the present experiment, the
pigeons received food for producing two
numerosities, one equal to 4 and the other
equal to 16 or more. Similar to Catania and
Reynolds’ experiment, the smaller numerosity
was reinforced with probability p, and param-
eter p varied across conditions; the larger
numerosity was reinforced always with proba-
bility 1.0.

The main goal of the experiment was to
examine whether pigeons could learn two
response numerosities simultaneously. We
predicted they would generate two runs of
responses on the left key. The first run would
have a mean length of about 4 and correspond
to the effect of the reinforcers received for
pecking the left key exactly 4 times and then
switching. The second run would have a mean
length slightly greater than 12 and correspond
to the effect of the reinforcers received for
pecking the left key at least 16 times and then
switching. To state these predictions more
precisely, let r1 and r2 stand for the lengths of
the first and second runs, respectively. That is,
r1 is the number of pecks emitted on the left

Fig. 4. Group data from the present study (open
triangles) are compared with the results from other
studies. Mechner (1958) used 6 rats in a chamber with
two levers. The open squares show the averages of the
means (m) and standard deviations (s) estimated to fit
individual frequency distributions. Platt and Johnson
(1971) used 8 rats in a chamber with a lever (response
A) and a hole for nose poking (response B). The open
circles show the means and standard deviations estimated
when fitting the data of a single rat. Laties (1972) used 4

r

pigeons with two response keys. The filled diamond shows
the averages of the obtained means and standard devia-
tions. Hobson and Newman (1981) used 12 pigeons with
mixed FR–FCN schedules. Their data appear as filled
squares in the lower two panels that display results for the
means (m) and the coefficient of variation (s/m).
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key from the trial onset until the pigeon
switches to the right key, and r2 is the number
of pecks emitted on the left key from the end
of the first run until the pigeon switches again
to the right key. In the following sequence of
left and right pecks, LLRRLLLLLR, the first
run is two pecks long (r1 5 2) and the second
run is five pecks long (r2 5 5). Given the
reinforcement contingencies of Experiment 2,
we predicted that: (a) the distribution of r1

would be Gaussian with a mean close to 4; (b)
the distribution of r2 would also be Gaussian
with a mean slightly greater than 12; (c) given
(a) and (b), the mean of r1 + r2 would be
slightly greater than 16; (d) given the hyper-
bola obtained in Experiment 1 (see bottom
panel of Figure 3) the coefficient of variation
of r1 would be slightly greater than the
coefficient of variation of r2; and (e) the
frequency of r1 would decrease with p, that is,
the strength of short runs would decrease as
their probability of reinforcement decreased.

In Experiment 2, when a pigeon completed
a short first run and did not receive food it
could emit a second run. Because reinforce-
ment followed whenever the two runs added
up to at least 16, one could expect, in a well-
trained pigeon, a negative correlation between
r1 and r2: short first runs followed by long
second runs and, conversely, long first runs
followed by short second runs. Such correla-
tions were reported by Platt and Johnson
(1971; see also Gallistel, 1990) when their rats
were exposed to FCN schedules in which
premature switches from response A (lever
press) to response B (nose poke) did not
cancel the trial. When there is no penalty for
switching before the criterion N is met, the
animals can produce on each trial a minimum
of one run (r1 $ N) and a maximum of N runs
(by alternating strictly between A and B, i.e., r1

5 1). Platt and Johnson showed that the rats
tended to produce a relatively long first run
followed by (when r1 , N) much shorter runs.
In addition, they found negative correlations
ranging from –.16 to –.39 between the current
run length ri and the cumulative number of
lever presses since trial onset (Srj, j 5 1..i–1).
They concluded that the cumulative number
of presses since trial onset was a discriminative
stimulus controlling run length after prema-
ture switches to B.

In the present experiment the pigeons
could switch from the left key to the right

key only twice and therefore only two runs
could be produced on each trial. The pro-
cedure with a maximum of two runs may be
seen as intermediate between a regular FCN
schedule in which only one run is allowed and
Platt and Johnson’s (1971) procedure in which
N runs are allowed. If the length of the second
run is controlled by the length of the first run,
then r1 and r2 should be negatively correlated.
Alternatively, if r1 has no influence on r2, then
their correlation should be zero. Experiment 2
also addressed this issue.

METHOD

Subjects and Apparatus

Four experimentally naive pigeons (Columba
livia) participated in the study. Housing
conditions and the experimental apparatus
were the same as in Experiment 1.

Procedure
The experimental details differed from

Experiment 1 only in the reinforcement rule.
In Experiment 1 all trials ended after the first
run with reinforcement if r1 $ N and with
a time-out if r1 , N; the criterion N varied
across conditions. In Experiment 2 each trial
ended after the first or the second run. If r1 $
16, reinforcement followed always and the trial
ended. If r1 5 4 then reinforcement followed
with probability p. If reinforcement did occur,
then the trial ended, but if reinforcement did
not occur, then the pigeon could produce
a second run. The second run ended in
reinforcement provided (r1 + r2) $ 16; other-
wise the ITI followed immediately. Thus the
pigeon could earn a reinforcer in one of three
ways: (a) by emitting a first run at least 16
pecks long; (b) by emitting a first run exactly
four pecks long; and (c) by emitting two runs
that summed to 16 or more pecks.

During four successive experimental condi-
tions, the probability of reinforcement given
that r1 5 4 equaled 1.0, .5, .25, and 1.0.
Table 3 shows the details. For example, con-
sider pigeon P11. During Condition 1, this
pigeon was exposed to the reinforcement
schedule described above with p 5 1.0. That
is, reinforcement followed the first run pro-
vided r1 5 4 or r1 $ 16. In case r1 ? 4 and r1 ,
16, reinforcement followed the second run
provided r1+ r2 $ 16. In all other cases the trial
ended without food. During Condition 2, p
changed to .5, which meant that only 50
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percent of the trials with r1 5 4 were followed
by food. It was still the case that r1 $ 16
guaranteed food or that, when the first run was
not reinforced, the pigeon could receive food
by producing a second run such that r1 + r2 $
16. Condition 3 was similar to Condition 2 with
p equal to .25, and Condition 4 was equal to
Condition 1.

When first exposed to Condition 1, only
pigeon P11 learned that reinforcement fol-
lowed short runs of r1 5 4 pecks. As will be
shown below, the pigeon produced distribu-
tions of r1 and r2 close to 4 and 12, re-
spectively. The other 3 pigeons showed no
such learning; after about 30 sessions they
continued to produce distributions with no
appreciable frequencies around 4. A shaping-
like procedure then was implemented (as
indicated by the asterisks in Table 3). Consid-
er the conditions for pigeon P12, for example.
Reinforcement followed when r1 5 4, r1 $ 8,
or r1 + r2 $ 8. By decreasing N2 from 16 to 8,

we hoped to increase the frequency of runs of
length 4 and thereby increase the pigeon’s
contact with reinforcement at r1 5 4. When
the distribution of first runs showed apprecia-
ble frequencies close to 4, we increased N2

from 8 to 12 and then from 12 to 16. For
pigeon P9, it was necessary to eliminate N1

altogether during a few sessions in order to
increase the frequency of short runs. Without
N1 the reinforcement contingency is identical
to that of Experiment 1, a pure FCN schedule
with N 5 4. Using this shaping-like procedure
the 3 pigeons learned the reinforcement
contingencies as evidenced by a bimodal
distribution of run length. Each experimental
condition remained in effect until the means
and standard deviations of run length ap-
peared visually stable for five consecutive
sessions.

RESULTS AND DISCUSSION

The data analysis covered the last five
sessions of each condition. Figure 5 shows
the distributions of the response runs during
Condition 1. The left panels correspond to r1,
the middle panels to r2, and the right panels to
the two runs combined (i.e., r1 and r1+ r2).
Because the number of opportunities to pro-
duce the two runs differed markedly, the
Figure shows absolute frequencies. The curves
in the left and middle panels are the best-
fitting Gaussian density functions. The curves
in the right panels will be described later.
Table 4 shows the estimated mean m and
standard deviation s for each curve and the
variance accounted for, v2.

In the left panels, the modes of r1 were at 3
or 4, the means were slightly less than 4 (the
mean for all pigeons ,m. 5 3.4), and the
standard deviations were slightly greater than 1
(,s. 5 1.2). Note that, although first runs of
16 or more pecks were reinforced always, the
pigeons rarely produced them during the last
five sessions of Condition 1. As Table 4 shows,
the curves fitted the data well (,v2. 5 .97).

In the middle panels, the modes of r2

ranged from 11 to 15, the means were close
to 14 (,m. 5 14.3), and the standard
deviations close to 4 (,s. 5 4.0). The curves
accounted for a smaller proportion of the
variance than those for the first run (,v2. 5
.87). The differences between the means of r1

and r2 show that all pigeons differentiated the
two consecutive run lengths.

Table 3

Schedule parameters and number of sessions for each
condition of Experiment 2. Reinforcement occurred with
probability p if the first run was of length N1 and with
probability 1.0 if the first run was of length at least N2 or
the two runs combined were of length at least N2 . Asterisks
indicate sessions with shaping (see text for further details).

Pigeon Condition N1 N2 p Sessions

P11 1 4 16 1.0 43
2 4 16 .5 16
3 4 16 .25 23
4 4 16 1.0 22

P12 1 4 16 1.0 28
1* 4 8 1.0 11
1* 4 12 1.0 8
1 4 16 1.0 32
2 4 16 .5 24
3 4 16 .25 24
4 4 16 1.0 19

P9 1 4 16 1.0 28
1* 4 8 1.0 20
1* – 4 7
1* 4 12 1.0 7
1* – 4 18
1 4 16 1.0 43
2 4 16 .5 25
3 4 16 .25 17
4 4 16 1.0 22

P18 1 4 16 1.0 30
1* 4 8 1.0 16
1 4 16 1.0 32
2 4 16 .5 23
3 4 16 .25 29
4 4 16 1.0 19
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The right panels combine the distributions
of r1 (left peaks) and r1 + r2 (right peaks). To
understand how these distributions were ob-
tained and what they mean, imagine that
a counter is reset to zero at the beginning of
each trial and then increments by one
whenever the pigeon pecks the left key.
However, the counter is visible only when the
pigeon switches to the right key. If one records
the number visible on the counter whenever

the pigeon switches to the right and then plots
the frequency distribution of the recorded
numbers, one gets the distributions shown in
the right panels. The importance of these
distributions is that they show the run lengths
on the left key that presumably cued the
pigeon to check the right key for food. In all
cases, the pigeons checked for food either
after approximately 3 or 4 pecks (r1) or after
slightly more than 16 pecks (r1 + r2) on the left

Fig. 5. The absolute frequency distributions of the first run (r1, left panels), second run (r2, middle panels), and both
runs (r1 and r1 + r2, right panels) during Condition 1 of Experiment 2 (p 5 1.0). The curves in the left and middle panels
are best-fitting normal distributions with parameters (m1, s1) and (m2, s2), respectively (see Table 4). The curves in the
right panels plot Equation 1 using the same parameters as the left and middle curves (i.e., m1, s1, m2, and s2).
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key. Obviously these numbers were due to the
reinforcement contingencies for r1 and r2.

The Appendix shows how to derive the
equation for the curves that appear in the
right panels. Assuming independence between
the two runs (an assumption to which we will
return), the probability of a run length equal
to n, P(R 5 n), is given by:

P (R ~ n) ~ f (n,m1,s1)

z
Xmin(n{1,15)

i~0

f (i,m1,s1)f (n { i,m2,s2)f g

{ f (4,m1,s1)f (n { 4,m2,s2)p, ð1Þ

where f(i, m, s) is the normal density function
with mean m and standard deviation s evalu-
ated at run length i.

The curves in the right panels of Figure 5
show Equation 1 with the parameters used to
fit the data from r1 (m1 and s1; see curves in
the left panels) and r2 (m2 and s2; see curves in
the middle panels). In other words, no extra
parameters were used in the curve fitting. The
curves fit the data well (,v2. 5 .97).

Figure 6 shows the data from the last
condition in which p again equaled 1.0. With
a few exceptions, the results reproduced those
from Condition 1: The distributions of r1

remained centered at 3 or 4 and those of r2

at values between 10 and 16. The exceptions
were some excessively short or excessively long
runs of r2 (see the arrows in the middle panels,
at r2 5 1 for Pigeon P11, and at r2 $ 22 for
Pigeon P9). The curves fit the data as well as in
Condition 1: ,v2. equaled .97, .84, and .95
for the left, middle, and right panels, re-
spectively.

Figure 7 shows the data for Condition 2.
When only 50 percent of the r1 5 4 runs were
reinforced, the distributions of r1 and r2 did
not change appreciably. Thus r1 remained
centered at 3 or 4 pecks and r2 at values
between 12 and 14. For Pigeon P12, the
frequency of r1 5 0 runs increased substan-
tially (see arrow and compare that value with
the corresponding values in Figures 5 and 6.).
This result suggests that, when the probability
of reinforcement decreased, stimulus control
of left key pecking at trial onset also decreased.
Loss of stimulus control also is suggested by
the relatively high frequency of short second
runs (i.e., 1 # r2 # 4; see arrow). The curves fit
the data as well as in Conditions 1 and 4:
,v2. equaled .96, .86, and .94 for the left,
middle, and right panels, respectively.

Finally, Figure 8 shows the data from Con-
dition 3. When the probability of reinforce-

Table 4

Run-length statistics based on curve fitting in Experiment 2. Except for pigeons P9 and P11 in
Condition p 5 .25, parameters m1 and s1 were used to fit the distribution of first runs (r1) and
parameters m2 and s2 were used to fit the distribution of second runs (r2). The three v2 values
are the variance accounted for by the curves on the left, middle, and right panels, respectively, in
Figures 5, 6, 7, and 8. For pigeons P9 and P11, parameters m1, s1, m2, s2, and l (see text for
explanation) were used to fit the r1 data in Figure 8. No attempt was made to fit the data of
Pigeon 11 in the middle and right panels of Figure 8 (cells with ‘‘—’’).

Condition Pigeon m1 s1 m2 s2 l v1
2 v2

2 v3
2

p 5 1.0 first P9 3.8 1.2 14.6 3.4 0.98 0.85 0.97
P11 4.1 1.2 14.2 4.2 0.98 0.79 0.98
P12 3.0 1.4 14.0 5.1 0.94 0.89 0.93
P18 2.7 1.0 14.6 3.3 0.99 0.96 0.99

p 5 1.0 last P9 3.6 1.2 12.2 4.5 0.98 0.88 0.96
P11 3.7 0.7 14.2 4.6 1.00 0.63 0.99
P12 3.3 1.5 10.5 3.3 0.91 0.90 0.87
P18 2.8 1.1 16.2 3.9 0.99 0.93 0.97

p 5 .5 P9 3.5 1.3 13.6 4.6 0.99 0.82 0.97
P11 3.7 0.9 12.6 3.5 1.00 0.86 1.00
P12 3.6 1.8 11.8 3.5 0.92 0.91 0.90
P18 3.5 1.3 14.1 4.5 0.92 0.86 0.89

p 5 .25 P9 3.9 1.1 11.1 3.8 0.27 0.79 0.92 0.87
P11 4.5 1.0 12.1 5.7 0.23 0.90 — —
P12 13.4 4.4 4.8 3.3 0.94 0.88 0.95
P18 2.9 1.3 14.8 3.6 0.94 0.92 0.93
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ment for r1 5 4 decreased to .25, the
distributions of r1 and r2 did not change for
pigeon P18 but changed significantly for the
other 3 pigeons, although in different ways.
Consider pigeon P12. The initial runs of 3 or 4
pecks almost disappeared and were replaced
by much longer runs with 13.5 pecks on the
average. The second runs were much shorter
than in the other conditions and averaged 4.8
pecks. That is, compared with the other

conditions, the average lengths of r1 and r2

were reversed—instead of emitting a short and
then a long run, the pigeon emitted a long run
and then, if it did not receive food, a short run.
A Gaussian density function fit reasonably well
the distribution of r1 (v2 5 0.94) but less well
the distribution of r2 (v2 5 .88). Equation 1 fit
well the combination of both runs (v2 5 0.95).

Next consider pigeon P9. The distribution
of r1 had three modes: one at 0, another at 4,

Fig. 6. The absolute frequency distributions of the first run (r1, left panels), second run (r2, middle panels), and of
both runs (r1 and r1 + r2, right panels) during Condition 4 of Experiment 2 (p 5 1.0). The curves in the left and middle
panels are best-fitting normal distributions with parameters (m1, s1) and (m2, s2), respectively (see Table 4). The curves in
the right panels plot Equation 1 using the same parameters as the left and middle curves (i.e., m1, s1, m2, and s2). The
arrows show excessively short or excessively long runs.
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and another at 16. The distribution of r2

remained similar to the distributions observed
during the other conditions. The relatively
high frequency of runs of length 0 (see arrow)
suggests a loss of stimulus control at trial onset.
We ignored such runs when fitting the data.
The distribution of the remaining runs could
be fit with the following model: At trial onset
the pigeon sampled from a normal distribu-

tion f, with parameters similar to those
obtained during the other conditions (m1 5
3.9, s1 5 1.1). However, at the end of the run
the pigeon did not always peck the right key.
Instead, on a fraction of the trials the pigeon
emitted a second run by sampling from
another normal distribution with parameters
m2 5 11.2 and s2 5 3.8. In other words, we
suggest that the two response patterns learned

Fig. 7. The absolute frequency distributions of the first run (r1, left panels), second run (r2, middle panels), and of
both runs (r1 and r1 + r2, right panels) during Condition 2 of Experiment 2 (p 5 .5). The curves in the left and middle
panels are best-fitting normal distributions with parameters (m1, s1) and (m2, s2), respectively (see Table 4). The curves in
the right panels plot Equation 1 using the same parameters as the left and middle curves (i.e., m1, s1, m2, and s2). The
arrows show excessively short runs.
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during the previous conditions, namely, ‘‘r1

pecks on the left key followed by one peck on
the right key’’ (pattern 1) and, in case the trial
continued, ‘‘r2 pecks on the left key followed
by one peck on the right key’’ (pattern 2), may
have been disrupted such that on some trials
the pigeon jumped, as it were, from the first to
the second pattern without pecking the right key.

If this interpretation is correct, then the first
run would be fitted by a weighted average of
two distributions:

P (r1 ~ n) ~ l | f (n,m1,s1) z 1 { lð Þ

| f n,m1 z m2,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1 z s2
2

q� �
,

ð2Þ

Fig. 8. The absolute frequency distributions of the first run (r1, left panels), second run (r2, middle panels), and of
both runs (r1 and r1 + r2, right panels) during Condition 4 of Experiment 2 (p 5 .25). Left panels: For pigeons P12 and
P18, the curves are best-fitting normal distributions with parameters (m1, s1). For pigeons P9 and P11 the curves are
weighted averages of two normal distributions (see Equation 2), one with weight l and the other with weight 1-l (see
Table 4). Middle panels: For pigeons P9, P12, and P18 the curves are best-fitting normal distributions with parameters
(m2, s2). Right panels: For pigeons P9, P12, and P18 the curves plot Equation 1 using the same parameters as the left and
middle curves. The arrows show excessively short runs.

RESPONSE NUMEROSITY 169



where l represents the proportion of trials in
which the pigeon pecked the right key at the
end of the first run. In case the first run was
not reinforced, the pigeon emitted a second
run by sampling from the same normal
distribution with parameters m2 and s2. The
solid curves in the top panels show that this
model fit the data reasonably well (see v2

values in Table 4).
For pigeon P11, the distribution of r1 also

was well fitted by a weighted average of two
normal density functions obtained as follows:
At trial onset the pigeon sampled from
a normal distribution with parameters m1 5
4.5 and s1 5 1.0. With probability l 5 .23 it
ended the run by pecking the right key; with
the complementary probability (1–l 5 .77) it
did not peck the right key but continued the
trial by sampling from another normal distri-
bution with parameters m2 5 12.1 and s2 5 5.7
and then pecking the right key. However, in
contrast with pigeon P9, the distribution of
second runs displayed in the middle panel of
Figure 8 was not Gaussian-like, for it presented
a high frequency of very short runs (i.e., r2 5 1
or 2; see arrow) and a low frequency of longer
runs ranging from 8 to about 18. That is, the
distribution of r2 also seemed to be a mixture
of two distributions. Unlike the previous cases,
no simple model consisting of a weighted
average of normal density curves fit well all the
data of pigeon P11. This fact explains the
absence of theoretical curves in the middle
and right panels of Figure 8.

In summary, when the reinforcement prob-
ability for runs of four pecks decreased to p 5
.25, the pigeons generated distinctly different
distributions of r1. For pigeon P18 the
distribution remained centered at short runs;
for pigeon P12 it was centered at long runs;
and for pigeons P9 and P11 it was bimodal,
resembling the combined distributions of r1

and r1+r2 observed during the other condi-
tions. The distributions of r2 also fell into
three classes. For pigeons P18 and P9 it
remained centered at long runs; for pigeon
P12 it was centered at short runs; and for
pigeon P11 it defied any simple description.

Concerning the coefficients of variation of
the r1 and r2 distributions, c1 and c2, re-
spectively, two questions may be asked: Were
they significantly different? And, were they
consistent with the values obtained in Exper-

iment 1? To answer the questions we analyzed
the data from the p 5 1.0 and p 5 .5
conditions and excluded the data from the p
5 .25 because of the marked changes in run-
length distributions observed during that
condition.

On the basis of the results from Experiment
1, in particular the hyperbolic decay of c with
N and therefore also with m, one would expect
c2 to be slightly less than c1. The data were in
the expected direction: In Condition 1 (p 5
1.0), the average values were c1 5 0.36 and c2

5 0.28; in Condition 2 (p 5 .5) the average
values were 0.37 and 0.31, and in Condition 4
(p 5 1.0) they were 0.34 and 0.31. The overall
averages were c1 5 0.36 and c2 5 0.30.
However, due to the variation across pigeons
and their small number, the differences
between c1 and c2 did not reach statistical
significance. A 3-condition 3 2-distribution
repeated measures ANOVA yielded all ps .
.05.

In Experiment 2 the average coefficient of
variation for r1 (c1 5 0.36) was close to the
value expected on the basis of Experiment 1
(0.33 for a mean run length of 3.4), but the
average coefficient of variation for r2 (c2 5
0.30) was clearly above the value expected on
the basis of Experiment 1 (0.21 for a mean run
length of 13.5). To better understand these
results, Figure 9 plots the estimated standard
deviations against the estimated means of the

Fig. 9. The estimated standard deviations plotted
against the estimated means of the run-length distribu-
tions in Experiment 1 (empty symbols) and Experiment 2,
Conditions p 5 1.0 and p 5 .5 (filled symbols). Each
symbol corresponds to a different pigeon. The two lines
are the average of the individual best-fitting regression
lines and account for 88 percent of the variance in the data
of Experiment 1 and 89 percent in the data of
Experiment 2.
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individual run length distributions (Table 2
may be consulted to obtain the values of s and
m in Experiment 1, and Table 4 may be
consulted to obtain the values of s1, m1, s2,
and m2 in Experiment 2). For the two data sets
to be consistent, the filled and empty symbols
should fall along the dotted line in the Figure.
This happened for the run lengths of 3 or 4
pecks that characterized r1 (leftmost filled
circles) but not for the run lengths of 11 to 15
pecks that characterized r2 (rightmost filled
circles). It follows that s increased with m more
in Experiment 2 than in Experiment 1. A t-test
comparing the slopes of the individual best-
fitting regression lines yielded a significant
result [(t(7) 5 3.5, p , .05)].

The difference in the slopes of the lines may
stem from a behavioral or a statistical source
(or both). Concerning the behavioral source,
note that in Experiment 1 all runs were
preceded by the ITI, whereas in Experiment
2 the first runs were preceded by the ITI, but
the second runs were preceded by one or
more pecks on the right key. This difference in
the stimulus conditions at the onset of some
runs may explain the differences in run-length
variability. Concerning the statistical source, if
runs follow a normal distribution with the
standard deviation a linear function of the
mean (the generalized Weber’s law), then
a negative correlation between r1 and r2 is
sufficient to increase the variability of the
second run. Specifically, if the conditional
distribution of r2 given r1 equals a normal
density function with parameters:

mr 2jr 1
~ a { b | r 1, and

sr 2jr 1
~ c z d | mr 2jr 1

,

then it can be shown that the variance of r2 will
be given by:

s2
r2 ~ c z dmr2ð Þ2 z b2s2

r1 d2 z 1
� �

,

where mr2 is the expected value of r2 and sr1 is
the standard deviation of r1. The expression
shows that the variance of r2 is greater than
(c+d 3 mr2)2, which is the variance expected in
the absence of a dependency of r2 on r1.

The preceding analysis raises the issue of
how the length of r1 correlated with the length
of r2. Table 5 shows the Pearson correlation
coefficients for all pigeons and conditions.
Half of the correlations were close to zero and

statistically not significant (t-test, p . .05). The
other half were statistically significant and,
with one exception, negative. Pigeon P12
showed consistently significant negative corre-
lations, and all pigeons showed significant
negative correlations when p 5 .25. In fact, the
data suggest a trend towards stronger negative
correlations as p decreased. However, with the
exception of one case, analyzed below, all
coefficients were rather small; in fact, r1

accounted for less than 12 percent of the
variance of r2. The magnitudes of the correla-
tion coefficients were similar to those reported
by Platt and Johnson (1971). The smallness of
most correlation coefficients explains why the
data displayed in the rightmost panels of
Figures 5 to 8 could be fitted by Equation 1,
which assumes independence between r1 and
r2. In fact when, instead of Equation 1, we
used an equation that took into account the
potential negative correlation between r1 and
r2, the quality of the fits did not change appre-
ciably (i.e., v2 did not change by more than
0.01)2.

The only substantial correlation between r1

and r2 (r 5 2.75) occurred in pigeon P11
when p 5 .25. A close analysis of the scatter
plot of the two run lengths showed that the
correlation was due to fact that first runs
shorter than about eight pecks tended to be
followed by second runs with an average
length of 13 pecks—as in the other experi-
mental conditions—but first runs longer than
eight pecks tended to be followed by second
runs of one or two pecks.

Table 5

Pearson coefficients of correlation between first and
second runs in the four conditions of Experiment 2.
Bold values are significantly different from 0 (t-test, p
, .05).

Pigeon p 5 1.0 (first) p 5 1.0 (last) p 5 .5 p 5 .25

P9 0.06 0.01 0.01 20.34
P11 0.15 0.00 0.11 20.75
P12 20.24 20.19 20.36 20.29
P18 20.05 20.08 20.19 20.17

2 Instead of Equation 1, we fitted an equation that
assumed that r2 depended linearly, but with negative slope,
on r1. Specifically, the probability that r2 5 j given that r1

5 i equaled the Gaussian function f(i, m(i), s(i)) with
mean m(i) 5 a – b x i and standard deviation s(i) 5 c x
m(i), for positive constants a, b, and c.
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GENERAL DISCUSSION

Experiment 1 extended Mechner’s (1958)
FCN schedule to pigeons and varied the
reinforcement criterion over a relatively large
range (4 # N # 32). Pigeons received food for
pecking key A at least N times and then
switching to key B; premature switches to key B
cancelled the trial. The results showed that
pigeons can learn to switch to key B after
emitting an average number of responses close
to the reinforcement criterion. As the average
number of pecks on key A increases, absolute
precision (measured by the standard deviation
of run length) increases linearly and therefore
relative precision (measured by the coefficient
of variation or Weber fraction) decreases
hyperbolically to an asymptote. In addition,
the distribution of run lengths is well fit by
a Gaussian function.

These findings, together with similar find-
ings reported by previous investigators using
FCN schedules (see Galbicka et al, 1991;
Gallistel, 1990; Laties, 1972; Mechner, 1958;
Platt & Johnson, 1971), corroborate the idea
that response numerosity is a differentiable
dimension of behavior consistent with a gener-
alized form of Weber’s law—the scalar prop-
erty was clearly violated for small numerosities
but held for relatively large values of N. In
addition, these findings add to the literature
a systematic set of run-length distributions and
their statistics (means and standard devia-
tions) that cover a relatively large range of
the numerosity dimension. As we show below,
these distributions and statistics are important
for the development and testing of theoretical
models of numerosity differentiation.

Since Mechner’s (1958) original study,
researchers have asked if performance under
FCN schedules is a case of temporal, not
numerosity, differentiation. The question is
raised because, if animals respond at a roughly
constant rate (as our pigeons did), then run
time will be strongly correlated with run
length—hence, performance could be based
on time, number, or both. Although we
cannot rule out this possibility, two indirect
arguments suggest that number was the
important dimension. First, Mechner and
Gevrekian (1962) found that postreinforce-
ment pauses and run durations could be
changed by manipulating deprivation level,
but those changes did not affect the distribu-

tions of run length for FCN schedules. In
other words, deprivation affected only the
nonreinforced dimension. Second, after a re-
view of the literature from temporal and
numerical procedures, Hobson and Newman
(1981) concluded that the decreasing trend of
the coefficient of variation observed in numer-
osity differentiation tasks for relatively small N
(see the bottom panels of Figures 2 and 3)
typically does not occur for comparable time-
based procedures, which tend to yield constant
coefficients of variation. The authors also
concluded from their review of transfer tests
(from time-based to number-based schedules
or vice-versa) that subjects tend to be most
sensitive to the reinforced dimension.

Experiment 2 attempted to differentiate two
response numerosities within the same session.
To that end, pigeons were exposed to a mod-
ified FCN schedule in which they had two ways
to receive food. First, as in the standard FCN
schedule, they could peck the left key at least
16 times and then switch to the right key, in
which case reinforcement followed with prob-
ability 1.0. And second, they could gamble, so
to speak, and try to collect food earlier and
with less effort by pecking exactly four times
on the left key and then switching to the right
key. In this case food followed with probability
p. If the pigeon decided to gamble but did not
receive food, then it had a second chance of
obtaining food by returning to the left key and
pecking it for a cumulative total of at least 16
pecks. Parameter p varied across conditions
from 1.0 to .25.

The results of Experiment 2 show that
pigeons can learn two response numerosities
simultaneously. This conclusion is based on
the fact that, when p equaled 1.0 or .5, each
pigeon emitted two response runs with non-
overlapping numerical distributions: The first
run had an average length close to 3.5 and
a standard deviation close to 1.2, and it
corresponded to the pigeons’ attempts to earn
the food available for pecking the left key
exactly four times. The second run had an
average length close to 13.5 and a standard
deviation close to 4.0. It corresponded to the
pigeons’ attempts to earn the food available
for pecking the left key at least 16 times (both
runs were included in the count).

The preceding findings extend the results
obtained by Fetterman, Dreyfus, and Stubbs
(1985). In their study, pigeons received food
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by pecking a key n1 times (e.g., 8) provided the
key was illuminated with red light, or by
pecking the same key a total of n2 times
(e.g., 32) provided it was illuminated with
green light. The pigeon could change the
keylight color from red to green by pecking
another key once. The schedule is similar to
Hobson and Newman’s (1981) mixed FR–FCN
schedule in the sense that, in both cases,
optimal performance required the pigeon to
peck the main key n1 times and then, if
reinforcement did not occur, switch and peck
the other key. Fetterman et al. reported that
pigeons performed as follows: They pecked on
the red key a number of times and then, when
food was not presented, they changed over to
green and continued to peck until food was
presented or the trial ended. The distribution
of the number of pecks on red before the
changeover occurred—the equivalent of run
length in FCN schedules—was Gaussian-like
with a median close to the harmonic mean of
n1 and n2.

It is important to clarify what Fetterman et
al.’s (1985) results show and do not show. The
distribution of run length on the red key shows
that pigeons can learn to differentiate one
response numerosity, and the median at the
harmonic mean of n1 and n2 shows that
differentiation is influenced by the schedule
parameters. But the results do not show that
pigeons can learn to differentiate two response
numerosities. In fact, their experiment re-
quired and obtained only one numerosity
and for that reason the authors could report
only one run-length distribution for each pair
of schedule parameters. To engender the
differentiation of two response numerosities
and thereby be able to report two run-length
distributions (similar to those displayed in the
left and middle panels of Figures 5 to 8), the
authors would have to require a second
changeover after a total of n2 pecks on green.
But then their experiment would be function-
ally equivalent to our Experiment 2 except for
the keylight color changes on the main key.
Whether these changes would alter our major
empirical findings remains to be determined.

Experiment 2 also examined the effects of
the probability of reinforcement following
runs of four pecks (p) and the correlations
between r1 and r2 (r). By analogy with mixed FI
FI schedules, we expected that the relative
weights of the r1 and r2 distributions would

change directly with p or, more specifically,
that the proportion of short runs (r1) would
decrease as p decreased. Results did not
confirm this expectation: When p changed
from 1.0 to .5 the r1 and r2 distributions did
not change appreciably (compare Figures 5, 6,
and 7), and when p changed from .5 to .25
these distributions changed appreciably in 3
out of 4 pigeons but in different ways
(compare Figures 7 and 8). As for the correla-
tions between r1 and r2, about half were not
significantly different from 0; the other half
were mostly negative but, as in Platt and
Johnson’s (1971) work, still weak (r , 0.36).
Only one correlation was relatively strong (r 5
2.75 for pigeon P11 in Condition 3). More
generally, there was some evidence that the
correlations between r1 and r2 become more
negative as p decreases (see Table 5).

Our results also suggest that the stimulus
conditions at the onset of a run may influence
its numerical precision. In fact, when p 5 1.0
and p 5 .5, the standard deviations of the
second runs tended to be greater than the
value expected on the basis of the results of
Experiment 1 (see Figure 9). We suggest that
this difference may have been due to the
(weak) negative correlations between r1 and r2

or to the fact that the stimulus conditions at
the onset of the runs differed (ITI versus pecks
on the right key). But how could the stimulus
conditions at the onset of a run affect its
variability? One way would be by affecting the
number of responses required to initiate the
hypothetical internal counter. That is, in the
generalized form of Weber’s law, s(N) 5 c 3
N+d, the context could determine the value of
the constant term d such that the ITI would be
associated with a smaller d than a peck on the
right key. The hypothesis remains to be tested.

Toward a model of numerosity differentia-
tion. The results of the two experiments may
be interpreted in terms of acquisition of
response patterns or runs of responses on key
A followed by a switch to key B. The contingen-
cies of reinforcement, in general, and the total
number of responses on key A when reinforce-
ment is delivered, in particular, shape the mean
length, or numerosity, of the response runs. But
how does the animal learn a pattern defined by
response numerosity? How does response dif-
ferentiation take place along the dimension of
number? These general questions are related to
three specific sub-questions.
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First, under FCN schedules, all patterns
whose length is equal to or greater than N
are reinforced whereas all patterns whose
length is less than N are extinguished.
Therefore, reinforcement selection is direc-
tional in the sense that the mean length of the
reinforced runs (say, m+) is at least as large as
the mean length of all emitted runs (m), that
is, m+ . m (this condition will hold unless all
run lengths are greater than N)3. Hence why
wasn’t there an upward drift of the mean run
length on key A?

Second, and related to the previous point,
the data from the N 5 16 and N 5 32
conditions in Experiment 1 show that pigeons
can produce relatively long response runs.
Why then are these runs not produced during
the N 5 8 or N 5 4 conditions? If they were,
the pigeons would collect many more of the
available reinforcers. To illustrate, in Experi-
ment 1 if the individual distributions obtained
when N 5 16 had been produced when N 5 8,
then the average percentage of reinforced
trials would not equal 77 (the range across
pigeons was 60 – 85) but 98 (with a range of 97
– 100; see also Galbicka et al., 1991, for
another instance in which the mean of the
normal-like distributions was significantly be-
low the criterion).

And third, how does a pigeon learn that the
reinforcement criterion decreased? To see the
problem, consider a pigeon exposed to an
FCN 32 schedule until it emits response runs
with 32 pecks on the average. Then the
schedule changes to FCN 4 as it did for pigeon
P16 in Experiment 1. The result is that,
although long response runs continue to be
reinforced during the new condition, mean
run length decreases to values close to 4. How
did the pigeon detect the change in the
criterion? (The opposite change, from 4 to
32, is easy to detect because of extinction
following the change.) The problem is func-
tionally equivalent to that of detecting extinc-
tion in an avoidance procedure (i.e., the
removal of the aversive stimulus) when the
animal is successfully avoiding the stimulus.

The preceding problems have not been
addressed in previous discussions of models
of counting as they apply to FCN schedules. As

noted in the Introduction, perhaps the best-
known counting model is Meck and Church’s
(1983) adaptation of Scalar Expectancy Theo-
ry. According to this information-processing
model, the number of pulses emitted by
a pacemaker following each response (the
counted event in FCN schedules) is added in
the accumulator. When a switch to key B is
reinforced, the number of pulses in the
accumulator is multiplied by a random vari-
able (the main source of the scalar property)
and then transferred to memory. To decide on
each trial when to switch to key B, the animal
extracts a sample from the memory store and
then compares it with the current number in
the accumulator. The similarity between the
two numbers determines whether the animal
switches or not. The problem is that, without
further assumptions, the model will be un-
stable. Because of the directional selection
mentioned above, the mean of the distribution
of counts in long-term memory should drift
upward, which is contrary to fact4. Moreover,
the model remains silent on how the animal
detects changes in the criterion, for example,
from 32 to 4. In what follows we propose
a model that addresses the foregoing issues.

The model focuses on learning and takes for
granted the scalar property. It assumes that at
the onset of trial n the animal samples from
a Gaussian distribution with mean m(n) and
standard deviation s(n), with s(n) equal to c
3 m(n) (Weber’s law). The number sampled
on trial n, X, is the run length on that trial.
Reinforcement will follow provided X $ N.
According to the model, learning consists of
changing m as a function of trial outcome.
Figure 10 shows the details.

There are three types of trials: (a) non-
reinforced trials (case X1 in the Figure); (b)
reinforced trials in which the current run
length is greater than the mean run length
(case X2); and (c) reinforced trials in which
the current run length is less than the mean

4 Because in the application of Scalar Expectancy Theory
to numerosity differentiation tasks the contents of the
accumulator are stored in memory only during reinforced
trials, it can be shown that the mean of the stored values
will drift upwards. Without additional assumptions, this
instability problem will occur not only in FCN schedules
but also in the analogous Differential Reinforcement of
Low Rates (DRL) schedules. To our knowledge this
instability problem has not received the attention it
deserves.

3 For an alternative, nondirectional or centripetal re-
inforcement selection, a schedule in which extinction
occurs on both sides of the criterion, see Galbicka, Fowler,
& Ritch (1991).
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run length (case X3). The model assumes that
parameter m changes differently in each case.

(a) If the run is not reinforced (X , N), then
the current mean run length does not
change (Dm 5 0). This assumption may
have to be relaxed in more complex
models and after experiments clarify
how m changes in extinction.

(b) If the run is reinforced and its length is
greater than m (X $ N and X $ m), then m
increases by the amount Dm 5 a – b 3
m(n), with a . 0 and b . 0. That is, the
magnitude of the increment decreases
linearly with m. This assumption captures
the idea that, as m increases, each re-
inforcer becomes more costly and there-
fore less effective in changing behavior.
The assumption also ensures that m will
not increase beyond the value a/b (when
m . a/b, Dm , 0). The value a/b is the
maximum mean run length the animal
will sustain in the current circumstances
(deprivation level, reinforcement quality
and amount, etc.). One important conse-
quence follows: When the maximum
mean run is less than the reinforcement

criterion (i.e., a/b , N), the model
generates run-length distributions with
means less than N (see Figure 1, N 5
32, pigeons P10, P13, and P99). But when
a/b . N, the model generates distribu-
tions with means greater than N (the
remaining cases in Figure 1). Thus the
model captures one key property of the
data.

(c) If the current run is reinforced but its
length is less than m (X $ N and X , m),
then m will decrease by a constant amount
Dm 5 –d, with d . 0 and d . a. The
inequality d . a means that decreasing m
is easier than increasing it.

In summary, the three equations for Dm
describe how reinforcement shapes m in the
direction of N: Extinction trials do not change
m; reinforced trials may increase, decrease, or
not change m depending on how the rein-
forced run length compares with current m
and with the maximum sustainable m.

Figure 11 shows the model fitted to the data
of pigeon P10 from Experiment 1. The
learning parameters a, b, and d were kept
constant, and only the coefficient of variation
c was allowed to vary with N, as the data
suggest it should. The curves represent the
average of 100 simulations with the initial m
close to N. The model fit the data reasonably
well (.87 # v2 # .96). In particular, note that,
in this case, the average run length is below
the criterion because a/b , N. For the
remaining pigeons, the individual fits ac-
counted for an average of 80 percent of the
variance (range: 42% to 94%).

Figure 12 summarizes the fit to all data from
Experiment 1. To compare model and data,

Fig. 11. The numerosity differentiation model fitted to
the data of pigeon P10 (Experiment 1). Only the
coefficient of variation c was allowed to vary with N. The
curves are averages of 100 simulations for each value of N.

Fig. 10. A model of numerosity differentiation under
FCN schedules with parameter N. On trial n, the animal
samples a number X from a normal distribution with mean
m(n) and standard deviation s(n) 5 c 3 m(n). If X, the run
length on that trial, is less then N, then the trial ends in
extinction and Dm(n) 5 0. If X $ N and X , m(n), the trial
ends in reinforcement and Dm(n) 5 –d. If X $ N and X $
m(N), the trial ends in reinforcement and Dm(n) 5 a –
bm(n). The following relations hold: a . 0, b . 0, d . 0,
and d . a.
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we first transformed the data from each
pigeon and condition by subtracting a constant
from each run length and dividing the result
by another constant. The two constants were
not the average and standard deviation of the
data—which would have yielded z-scores—but
the average and standard deviation of the
Gaussian curves displayed in Figure 1. We
refer to these transformed values as ‘‘z-values.’’
The same two constants were used to trans-
form the curve predicted by the model. Next
we used linear interpolation to obtain the
‘‘data’’ at regular z-values (from z 5 –3.0 to z 5
+3.0), and finally we averaged across pigeons
to obtain the average data for each experi-
mental condition. The same steps were carried
out for each curve generated by the model,
yielding the curves shown in Figure 12.

The average of the predicted curves fit the
average of the obtained curves reasonably well
both in terms of accuracy (mean) and pre-
cision (standard deviation), but they tended to
undershoot the peak values observed around
N 5 4, 8, and 16. The proportion of variance
accounted for equaled .98 (N 5 4), .95 (N 5
8), .97 (N 5 16), and .98 (N 5 32). Note that

the theoretical model used seven parameters
to fit four curves whereas the atheoretical fits
displayed in Figure 1 used eight parameters.

The model solves the three problems
mentioned above. First, directional selection
will not cause an upward drift in the mean run
length for two reasons: because some reinforc-
ers will actually decrease mean run length
(whenever X , m), and because even when the
reinforcers increase mean run length (when-
ever X . m) their effectiveness decreases with m
and vanishes when m 5 a/b. Second, pigeons
do not become more efficient at collecting the
reinforcers because, whenever mean run
length is much larger than the schedule
criterion (m .. N), the net effect of reinforce-
ment is to decrease m (because d . a) and
thereby reduce the subject’s efficiency. Third,
for the same reason, pigeons will detect
a decrease in the reinforcement criterion. To
illustrate, assume that after a large number of
sessions N changes from 32 to 4. Initially, the
run lengths will average approximately 32
pecks but, because d . a, the effect of
reinforcement when X , m will be greater
than the effect of reinforcement when X $ m;

Fig. 12. The symbols show the averages of the individual frequency distributions for the 5 pigeons of Experiment 1.
The curves show the averages of the individual curves predicted by the numerosity differentiation model.
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the net effect will be a decrease in m5.
However, both model and pigeon will have
difficulties adjusting to large increases in the
reinforcement criterion. If after a large num-
ber of sessions N changes from 4 to 32, neither
the model nor a naive pigeon will generate run
lengths sufficiently large to be reinforced;
both will require successive approximations.
How stimulus control assumptions may be
added to the model in order to account for the
data from Experiment 2 and from other
studies (e.g., Platt & Johnson, 1971) remains
to be determined.
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5 The mean of the distribution will continue to decrease and
approach N until the following stability condition is attained,
1
2 a { b | mð Þ~ d |

Ð m

N f t,m,cmð Þdt; where f(t,m,cm) is the
normal density function with mean m and standard deviation
cm evaluated at t.
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APPENDIX

To obtain an equation for the curves on the
right panels of Figures 5, 6, 7, and 8, we note
that each corresponds to the probability distri-
bution of run length on the left key at the
moment the pigeon switches to the right key.
Let P(R 5 n) represent the probability that run
length equals n. To derive an expression for
P(R 5 n), we note that R 5 n means that one of
two events happened, either r1 5 n or r1+ r2 5
n, because the peck on the right key ended
either a first run, in which case r1 5 n, or
a second run, in which case r1+ r2 5 n. Hence,

P R ~ nð Þ~ P }r1 ~ n} Or }r1 z r2} ~ nð Þ

~P r1 ~ nð Þz P r1 z r2 ~ nð Þ,ðA1Þ

where the last equality follows because the
events ‘‘r1 5 n’’ and ‘‘r1+ r2 5 n’’ are mutually
exclusive.

The first term, P(r1 5 n), may be approx-
imated by a Gaussian density function with
mean m1 and standard deviation s1:

P r1 ~ nð Þ& f (n,m1,s1): ðA2Þ
The second term, P(r1+ r25n) can be

obtained by conditioning on the length of r1.
That is,

P r1 z r2 ~ nð Þ

~
Xmin n{1,15ð Þ

i~0

P r1 z r2 ~ njr1 ~ ið ÞP r1 ~ ið Þ

~
Xmin n{1,15ð Þ

i~0

P r1 ~ ið ÞP r2 ~ n { ijr1 ~ ið Þ:

ðA3Þ

Note that the summation index did not extend
beyond 15 because all first runs of length greater
than 15 were reinforced and ended the trial;
there were no r2 runs under those circum-
stances. In contrast, for the sum of the two runs
to equal n, the first run could not exceed n – 1
pecks (the second run could not equal 0).

In the preceding summation, one must
consider the special case i 5 4 and distinguish
two events, namely, the first run was reinforced
(which occurred with probability p), or it was
not (probability 1 – p). In the first event, the
trial ended and there was no opportunity for
a second run; in the second event, the trial
continued and r2 was produced. Hence, when i

5 4 only nonreinforced trials contribute to the
summation:

P r1 z r2 ~ nð Þ

~
Xmin n{1,15ð Þ

i~0,i=4

P r1 ~ ið ÞP r2 ~ n { ijr1 ~ ið Þf g

z P r1 ~ 4ð ÞP r2 ~ n { 4jr1 ~ 4ð Þ 1 { pð Þ:
ðA4Þ

After multiplying and rearranging one gets:

P r1 z r2 ~ nð Þ

~
Xmin n{1,15ð Þ

i~0

P r1 ~ ið ÞP r2 ~ n { ijr1 ~ ið Þf g

{ P r1 ~ 4ð ÞP r2 ~ n { 4jr1 ~ 4ð Þp:
ðA5Þ

If one assumes independence between r1

and r2, then Equation A5 simplifies to:

P r1 z r2 ~ nð Þ

~
Xmin n{1,15ð Þ

i~0

P r1 ~ ið ÞP r2 ~ n { ið Þf g

{ P r1 ~ 4ð ÞP r2 ~ n { 4jr1 ~ 4ð Þp:

ðA6Þ

In Equation A6, the term in brackets repre-
sents the convolution of r1 and r2, and the last
term represents the correction for the case r1

5 4. We approximate the distribution of r2 by
a Gaussian density function, as we did for r1:

P r1 z r2 ~ nð Þ

~
Xmin n{1,15ð Þ

i~0

f (i,m1,s1)f (n { i,m2,s2)f g

{ f (4,m1,s1)f (n{4,m2,s2)p:

ðA7Þ

Finally, combining Equations A2 and A7
yields

P (R ~ n) ~ f (n,m1,s1)

z
Xmin n{1,15ð Þ

i~0

f (i,m1,s1)f (n { i,m2,s2)f g

{ f (4,m1,s1)f (n { 4,m2,s2)p:

ðA8Þ

Equation A8 was used to fit the data in the
right panels of Figures 5, 6, 7, and 8.
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